Сообщество - THE SPACEWAY

THE SPACEWAY

221 пост 121 подписчик

Популярные теги в сообществе:

5

Гравитационное микролинзирование

Гравитационное микролинзирование позволяет астрономам обнаруживать экзопланеты, недоступные для традиционных методов наблюдения. Этот феномен возникает, когда массивный объект (звезда с планетой) проходит на фоне далекой звезды, временно усиливая ее свет за счет гравитационного искривления ткани пространства-времени.

Экзопланета OGLE-2005-BLG-390Lb в представлении художника / © ESO

Экзопланета OGLE-2005-BLG-390Lb в представлении художника / © ESO

25 января 2006 года коллаборация OGLE объявила об обнаружении экзопланеты OGLE-2005-BLG-390Lb методом гравитационного микролинзирования. Объект расположен в созвездии Стрельца на расстоянии 21 500 ± 3 300 световых лет от нас. Эта суперземля, с массой в 5,5 раза больше массы Земли, была замечена благодаря небольшому всплеску яркости фоновой звезды: на несколько дней ее свет усилился примерно на 3%.

Благодаря этому кратковременному эффекту ученым удалось подтвердить существование одной из самых удаленных экзопланет, когда-либо обнаруженных человечеством.

Показать полностью 1
12

Загадочная карликовая галактика UGC 8201 в созвездии Дракона

На первый взгляд может показаться, что на этом снимке от космического телескопа NASA/ESA "Хаббл" запечатлено звездное скопление.

© NASA/ESA

© NASA/ESA

Однако в действительности это карликовая неправильная галактика UGC 8201, расположенная в созвездии Дракона на расстоянии 15 миллионов световых лет от Земли.

Подобные объекты значительно меньше галактик, таких как наш Млечный Путь. Если в Млечном Пути насчитывается от 100 до 400 миллиардов звезд, то карликовые галактики, вроде UGC 8201, вмещают лишь сотни миллионов, а в редких случаях — несколько миллиардов светил.

Обратите внимание на задний план: почти все видимые объекты на этом снимке — другие галактики, раскинувшиеся на бескрайних просторах космоса.

Читайте также:

Исследование: сверхновые стали причиной двух массовых вымираний на Земле.

Показать полностью 1
17

Ионосфера Титана: гигантские органические молекулы и тайны ранней Земли

Ионосфера Титана создает органические молекулы удивительной сложности. Анализ данных миссии NASA "Кассини" показал, что верхние слои атмосферы этого крупнейшего спутника Сатурна содержат отрицательные ионы с массой до 13 800 а.е.м. — в сотни раз тяжелее обычных атмосферных газов!

© NASA

© NASA

Эти гигантские молекулы формируются под действием солнечного ультрафиолета из простых углеводородов и постепенно опускаются вниз, создавая оранжевую дымку. Ученые предполагают, что похожие процессы могли происходить в атмосфере ранней Земли, формируя предшественников биологических молекул.

Показать полностью 1
15

Пара сливающихся галактик ESO 593-8

ESO 593-8 — пара сливающихся галактик в созвездии Стрельца. Этот галактический танец происходит на расстоянии в 650 миллионов световых лет от нас.

© NASA/ESA

© NASA/ESA

Показать полностью 1
12

Малоизвестные снимки космоса: Марс, Фобос и региональная буря

Перед вами малоизвестный снимок Марса, полученный орбитальным аппаратом ОАЭ "Аль-Амаль" ("Надежда") 5 января 2022 года. В одном кадре оказались: обширная темная область Большой Сирт (лат. Syrtis Major), окутанная пылевой бурей, и спутник Фобос, безмятежно проплывающий над поверхностью Красной планеты.

© UAESA/MBRSC/HopeMarsMission/EXI/AndreaLuck

© UAESA/MBRSC/HopeMarsMission/EXI/AndreaLuck

Пылевые бури — дыхание Красной планеты

Пылевые бури на Марсе — одно из самых масштабных явлений в Солнечной системе. В отличие от земных, марсианские бури могут достигать планетарного масштаба, окутывая весь мир пылевым одеялом на недели или даже месяцы.

© UAESA/MBRSC/HopeMarsMission/EXI/AndreaLuck

© UAESA/MBRSC/HopeMarsMission/EXI/AndreaLuck

На этом снимке мы видим региональную бурю, накрывающую Большой Сирт — один из самых темных и заметных регионов Красной планеты, имеющий вулканическое происхождение. Средний диаметр области составляет 1 300 километров.

Ученые уделяют пристальное внимание каждой марсианской буре, поскольку они играют ключевую роль в формировании климата планеты. Вздымающиеся частицы пыли насыщают разреженную атмосферу, влияя на ее температуру и температуру поверхности, создавая сложную систему обратных связей.

Фобос — обреченный спутник

В кадр также попал Фобос — ближайший и самый крупный из двух спутников Марса со средним диаметром 22,5 километра. Этот небольшой космический объект движется настолько быстро, что обгоняет вращение самого Марса. На полный оборот вокруг планеты Фобосу нужно всего 7 часов 39 минут. Если бы вы оказались на поверхности планеты, то наблюдали бы восход спутника на западе и заход на востоке.

© UAESA/MBRSC/HopeMarsMission/EXI/AndreaLuck

© UAESA/MBRSC/HopeMarsMission/EXI/AndreaLuck

© UAESA/MBRSC/HopeMarsMission/EXI/AndreaLuck

© UAESA/MBRSC/HopeMarsMission/EXI/AndreaLuck

Еще один интересный факт, связанный с Фобосом, заключается в том, что он — обреченный спутник. Фобос неумолимо приближается к Марсу со скоростью около двух метров за столетие. Результаты моделирования показывают, что примерно через 30-50 миллионов лет гравитация планеты разорвет Фобос на мелкие фрагменты, из которых сформируется временная кольцевая система.

Надежда Арабских Эмиратов

"Аль-Амаль" — первая межпланетная миссия арабского мира. Космический аппарат, в создании которого участвовали консультанты NASA, был запущен 19 июля 2020 года, а его выход на орбиту вокруг Марса состоялся 9 февраля 2021 года. И с тех пор зонд исследует атмосферу и климат планеты, включая суточные и сезонные изменения.

Снимки, подобные этому, имеют не только эстетическую, но и огромную научную ценность, позволяя отслеживать динамику атмосферных процессов.

Изучая Марс, мы лучше узнаем историю планеты-соседки и формируем представление о судьбе нашего собственного мира, поскольку обе планеты имеют много общего в своем геологическом прошлом.

Читайте также:

Показать полностью 4
12

Досолнечные зерна и история Солнца

Древнейшие метеориты содержат минералы, которые старше самого Солнца. Эти "досолнечные зерна" сформировались в атмосферах умирающих звезд (красных гигантов и сверхновых) миллиарды лет назад и сохранились внутри метеоритов благодаря своей исключительной стабильности.

© <!--noindex--><a href="https://pikabu.ru/story/dosolnechnyie_zerna_i_istoriya_solntsa_12604447?u=http%3A%2F%2Fpinterest.com&t=pinterest.com&h=2ff2c69448f2e8e1907ad321a6afe8f2b378d982" title="http://pinterest.com" target="_blank" rel="nofollow noopener">pinterest.com</a><!--/noindex-->

© pinterest.com

Анализ изотопного состава этих зерен показывает, что наша Солнечная система сформировалась из вещества как минимум семи разных звезд. Особенно интересны включения карбида кремния, чей изотопный профиль указывает на происхождение из сверхновой типа II, взорвавшейся примерно 7-8 миллиардов лет назад.

Это открытие опровергает старую гипотезу о формировании Солнечной системы из одного однородного газопылевого облака и показывает гораздо более сложную историю вещества, из которого мы состоим.

Интересное по теме:

Метеорит Альенде: источник внеземных белков и досолнечных зерен.

Показать полностью 1
12

Что появилось раньше: галактики или сверхмассивные черные дыры?

Все известные галактики, от карликовых до гигантских, демонстрируют признаки наличия сверхмассивной черной дыры (СЧД) в центре. Хотя прямые доказательства* есть лишь для 10% каталогизированных галактик, астрономы уверены: наличие центральной СЧД — это правило, а не исключение.

© <!--noindex--><a href="https://pikabu.ru/story/chto_poyavilos_ranshe_galaktiki_ili_sverkhmassivnyie_chernyie_dyiryi_12599096?u=http%3A%2F%2Feastafricanewspost.com&t=eastafricanewspost.com&h=72ccc56682812c65875c3ce54cb4b49f02057866" title="http://eastafricanewspost.com" target="_blank" rel="nofollow noopener">eastafricanewspost.com</a><!--/noindex-->

© eastafricanewspost.com

*Обнаружить "спящие" и менее массивные объекты такой природы крайне трудно из-за отсутствия активности, которая могла бы компенсировать огромные расстояния.

Эта космическая закономерность указывает на глубокую, фундаментальную связь между галактиками и их центральными "гравитационными монстрами". Но кто же является лидером в этом космическом тандеме? Отвечает ли галактика за формирование СЧД, или черная дыра вершит судьбу всей галактики?

Властелины галактической эволюции

В июне 2021 года астрономы наблюдали за галактикой со сложным названием HSC J124353.93+010038.5 (сокращенно HSC J124353), расположенной на расстоянии около 13,1 миллиарда световых лет от Земли. Ученые зафиксировали мощнейшие порывы "галактического ветра" — раскаленного газа и заряженных частиц, стремительно вырывающихся из центра галактики.

Источником этого космического урагана оказалась центральная СЧД. Механизм здесь следующий: материя, падая на черную дыру, формирует раскаленный аккреционный диск, который начинает вращаться с околосветовой скоростью. Из-за колоссального гравитационного и магнитного взаимодействия часть этой материи не поглощается черной дырой, а выбрасывается перпендикулярно диску в виде мощных струй плазмы — так называемых джетов. Эти джеты, разогретые до миллионов градусов, взаимодействуют с окружающим газом, создавая тот самый "галактический ветер", скорость которого в случае с HSC J124353 составляет более 1,8 миллиона километров в час. Этот галактический ветер приводит к разогреву окружающего газа, что фактически останавливает процесс звездообразования.

Из центра галактики M 87 вырывается джет / © NASA/ESA

Из центра галактики M 87 вырывается джет / © NASA/ESA

Важно отметить, что для зарождения новых звезд горячий газ необходим, но его непрерывный нагрев галактическим ветром делает сжатие газовых облаков невозможным. А без этого новые звезды не формируются или формируются запредельно медленно.

Созидательное разрушение

Однако не все черные дыры препятствуют зарождению звезд. Например, в карликовой галактике Henize 2-10, находящейся "всего" в 34 миллионах световых лет от нас, черная дыра играет прямо противоположную роль.

Механизм этого процесса элегантен: поглощая материю, СЧД позволяет части нагретого газа "сбежать" к периферии галактики. Там этот газ сталкивается с холодными газовыми облаками, передает им энергию, остывает и запускает процесс формирования новых звезд.

Активное звездообразование в карликовой галактике Henize 2-10 / © NASA/ESA

Активное звездообразование в карликовой галактике Henize 2-10 / © NASA/ESA

Возникает закономерный вопрос: почему в крупной галактике HSC J124353 галактический ветер препятствует звездообразованию, а в карликовой Henize 2-10 — наоборот, способствует ему? Все дело в масштабах и энергии. В крупных галактиках сверхмассивные черные дыры обычно имеют массу в миллиарды солнечных масс и, следовательно, генерируют более мощные выбросы. Эти мощные потоки разогревают газ по всему объему галактики, не давая ему остыть. В карликовых же галактиках черные дыры заметно меньше (в Henize 2-10 масса центральной черной дыры оценивается примерно в миллион солнечных масс). Вырывающиеся джеты имеют меньшую энергию и успевают ощутимо рассеяться еще до достижения периферии. Там разогретый, но уже не такой горячий газ, столкнувшись с холодными облаками, создает идеальные условия для запуска звездообразования.

Двойственная природа космических властителей

Эти особенности, наблюдаемые и в других галактиках разных форм и размеров, позволяют сделать вывод, что СЧД выполняют роль "вселенских регуляторов", которые:

  • Ограничивают рост крупных галактик, предотвращая их неконтролируемое расширение;

  • Помогают расти карликовым галактикам, запуская процессы звездообразования.

© <!--noindex--><a href="https://pikabu.ru/story/chto_poyavilos_ranshe_galaktiki_ili_sverkhmassivnyie_chernyie_dyiryi_12599096?u=http%3A%2F%2Fbestmethodsblog.com&t=bestmethodsblog.com&h=3dd7644f20b5484eb504f7b08667f69c9f71f815" title="http://bestmethodsblog.com" target="_blank" rel="nofollow noopener">bestmethodsblog.com</a><!--/noindex-->

© bestmethodsblog.com

Такое избирательное поведение указывает на то, что именно СЧД, а не галактики, играют ведущую роль в этом космическом тандеме. Логично предположить, что сверхмассивные черные дыры появились раньше галактик, поскольку именно они контролируют звездообразование — ключевой процесс в эволюции любой галактической структуры.

Читайте также:

Показать полностью 3
Отличная работа, все прочитано!