Westerlund 1: Первое свидетельство выброса вещества из молодого массивного звездного скопления
Изображение Вестерлунд 1 скопления, снятое камерой ближнего ИК диапазона телескопа Джеймса Уэбба (НАСА). В видимом свете скопление скрыто пылевыми облаками, но ИК свет проникает сквозь них.
Астрономы из Института ядерной физики Макса Планка и их коллеги обнаружили новый источник гамма-излучения в окрестностях звездного скопления Вестерлунд 1, проливая свет на механизмы ускорения космических лучей и образования гигантских "суперпузырей". С помощью данных с телескопов H.E.S.S. и Fermi, исследователи связали асимметричную структуру гамма-излучения с оттоком вещества из скопления, которое проталкивает частицы за пределы галактического диска. Это открытие подтверждает роль молодых массивных скоплений в транспорт космических лучей, влияя на понимание эволюции галактик.
Звездные скопления играют ключевую роль в жизни галактик, служа местом рождения новых звезд. Часто они содержат массивные звезды — с массой в десятки солнечных — чьи мощные stellarные ветры коллективно создают "суперпузыри": гигантские полости в межзвездной среде, очищенные от газа и пыли. Эти скопления также являются источниками высокоэнергетических частиц — космических лучей, — но изучать их напрямую сложно из-за отклонения заряженных частиц магнитными полями. Вместо этого астрономы фокусируются на гамма-излучении высокой энергии, которое космические лучи генерируют и которое распространяется по прямым линиям.
На снимке от радио-обсерватории, на которой показан новый источник гамма-излучения J1654–467 с энергией GeV, который, как полагают, возникает в результате выброса из звездного скопления Вестерлунд 1 (местоположение отмечено символом звезды).
В Млечном Пути выделяется скопление Вестерлунд 1: ближайшее и самое массивное из известных массивных скоплений, расположенное примерно в 13 000 световых годах от Земли. Оно ярко светится и активно рождает звезды, производя множество космических лучей. Ранние наблюдения с помощью системы телескопов H.E.S.S. подтвердили присутствие тераэлектронвольтного (ТэВ, 10¹² эВ) гамма-излучения вокруг Вестерлунд 1, проявляющегося как кольцеобразная структура. Это излучение связано с ускорением частиц на фронте ударной волны от коллективного ветра звезд. Однако кольцо было асимметричным: с "хвостом" в одном направлении, причины которого оставались загадкой.
Теперь международная команда астрономов во главе с профессором Марианной Лемуан-Гумар из университета Бордо и доктором Ларсом Мурманом из H.E.S.S. collaboration представила новое исследование, опубликованное в журнале Nature Communications. Используя данные космического гамма-телескопа Fermi, чувствительного к гигаэлектронвольтным (ГэВ, 10⁹ эВ) энергиям, ученые обнаружили дополнительный источник гамма-излучения на расстоянии около 320 световых лет от Вестерлунд 1 — именно в направлении хвоста ТэВ-структуры.
"Это гамма-излучение сильно связано с наблюдаемым ТэВ-излучением по пространственным характеристикам и спектрам, что указывает на общее происхождение", — объясняет Лемуан-Гумар, первый автор работы. Дополнительные наблюдения на 21-сантиметровой линии водорода выявили дефицит плотности газа в области нового источника, совпадающий с положением гамма-излучения. Это позволило предположить, что мы наблюдаем отток вещества из скопления, проталкивающий частицы от плоскости галактики и формирующий полость.
Моделирование показывает, что оба типа гамма-излучения возникают от электронов космических лучей, ускоренных на фронте ударной волны вблизи Вестерлунд 1 через процесс обратного комптоновского рассеяния. Высокоэнергетичные электроны испускают ТэВ-излучение рядом со скоплением, теряя энергию быстро. Более низкоэнергетичные электроны перемещаются дальше по потоку, генерируя ГэВ-излучение на большом расстоянии. Однако эти электроны сопровождаются другими компонентами космических лучей — протонами и тяжелыми ядрами.
"Это открытие — первое наблюдательное подтверждение сценария, где суперпузырь вокруг массивного скопления асимметрично расширяется из-за градиента плотности среды, формируя зарождающийся отток", — добавляет Люсия Харер, докторантка в MPIK, разработавшая теоретическую модель.
Ученые предполагают, что такой поток через миллионы лет вырвется за пределы галактического диска, открыв канал для переноса космических лучей в галактическое гало. Этот процесс важен для эволюции галактик, но ранее не имел подтверждений. "Результаты подчеркивают, что потоки частиц могут быть распространены вокруг молодых массивных скоплений", — отмечает Мурман.
Будущие наблюдения с помощью Cherenkov Telescope Array и исследований других скоплений помогут определить, является ли открытие у Вестерлунд 1 уникальным или типичным. Это исследование не только уточняет механизмы звездных скоплений, но и расширяет наше видение космоса.













